Tutorial for Python users

In this tutorial we will enrich Acropora digitifera observations with bathymetry information. Please make sure you already followed the installation instructions.

We will first load the occurence file and create an enrichment file. As we download environment data, necessary metadata will be saved into that file.

Afterwards, we will pick a variable id from the catalog, and start downloading bathymetry data.

Finally, we will visualize the result for one of the occurrences.

Load your occurrence data

[ ]:
import os
from geoenrich.dataloader import *
from geoenrich.enrichment import create_enrichment_file

If you are using your own dataset (DarwinCore format)

A DarwinCore archive is bundled into the package for user testing (GBIF Occurrence Download 10.15468/dl.megb8n).

If you don’t have a dataset and you don’t want to register to GBIF yet you can use this one.

[ ]:
example_path = os.path.split(geoenrich.__file__)[0] + '/data/AcDigitifera.zip'
geodf = open_dwca(path = example_path)

If you are using your own dataset (csv format)

Fill in the path to your csv and the compulsory column names.

Additional arguments are passed down to pandas.read_csv

[ ]:
geodf = import_occurrences_csv(path = '', id_col = '', date_col = '', lat_col = '', lon_col = '')

If you do not have occurrences but want to enrich arbitrary areas

See documentation for information about input file format.

[ ]:
example_path = os.path.split(geoenrich.__file__)[0]  + '/data/areas.csv'
df = load_areas_file(example_path)

Create enrichment file

[ ]:
# For occurrences
dataset_ref_occ = 'ac_digitifera'
create_enrichment_file(geodf, dataset_ref_occ)
[ ]:
# For areas
dataset_ref_areas = 'arbitrary_areas'
create_enrichment_file(df, dataset_ref_areas)


[ ]:
from geoenrich.enrichment import enrich

Define enrichment scope

We use the dataset reference that was used to create the enrichment file.

geo_buff is the buffer around the occurences (in kilometers).

time_buff specifies a temporal buffer. In this case we download data from 7 days before the occurrence date, to the occurrence date. time_buff is only used for variables that have a time dimension

[ ]:
var_id = 'bathymetry'
dataset_ref_occ = 'ac_digitifera'
geo_buff = 115
time_buff = (-7, 0)

Only enrich a small slice first to check speed.

[ ]:
enrich(dataset_ref_occ, var_id, geo_buff, time_buff, slice = (0, 100))

For large areas, use downsample argument to download only part of available data (to reduce download time)

[ ]:
# Skip 9 latitude and longitude points for every downloaded point.
dataset_ref_areas = 'arbitrary_areas'
downsample = {'latitude': 9, 'longitude': 9}

enrich(dataset_ref_areas, var_id, downsample = downsample)

Data retrieval

from geoenrich.enrichment import read_ids, enrichment_status
from geoenrich.exports import *
dataset_ref = 'ac_digitifera'
var_id = 'bathymetry'

Check the enrichment status of the dataset.

[ ]:

Export summary statistics to a csv file

[ ]:
produce_stats(dataset_ref, var_id, out_path = './')

Export data as a raster layer for the first occurrence of the dataset

[ ]:
ids = read_ids(dataset_ref)
occ_id = ids[0]
[ ]:
export_raster(dataset_ref, occ_id, var_id, path = './')

Export data as a png file for the first occurrence of the dataset

ids = read_ids(dataset_ref)
occ_id = ids[0]
[ ]:
export_png(dataset_ref, occ_id, var_id, path = './')

Retrieve the raw data and plot it

output = retrieve_data(dataset_ref, occ_id, var_id, shape = 'buffer')

data = output['values']
unit = output['unit']
coords = output['coords']
from shapely import wkt
from matplotlib import pyplot as plt
%matplotlib notebook

# Get latitude and longitude values for the requested data
lat_dim = [c[0] for c in coords].index('latitude')
lon_dim = [c[0] for c in coords].index('longitude')
lats = coords[lat_dim][1]
longs = coords[lon_dim][1]

# Get coordinates for the occurrence point
filepath = biodiv_path + dataset_ref + '.csv'
df = pd.read_csv(filepath, parse_dates = ['eventDate'], infer_datetime_format = True, index_col = 0)
point = wkt.loads(df.loc[occ_id, 'geometry'])

# Plot
extent = [longs[0] , longs[-1], lats[0] , lats[-1]]
plt.imshow(data, extent = extent, origin = 'lower')
plt.title(var_id + ' (' + unit + ')')
plt.scatter([point.x], [point.y], c='black', marker='x')

# NB: If your data has time or depth dimensions, you will have to pick a slice of the data array to be able to plot it
<matplotlib.collections.PathCollection at 0x7f7877ead880>

Using occurrence data from GBIF

You may want to use occurrences from GBIF. GeoEnrich provides a few functions to easily download occurrences for any taxon, relying on the pygbif package.

[ ]:
from geoenrich.dataloader import *

Get GBIF id for the taxon of interest

[ ]:
tax_key = get_taxon_key('Acropora digitifera')

Request an archive with all occurrences of this taxon

[ ]:
request_id = request_from_gbif(tax_key)

Download request

For large requests, some waiting time is needed for the archive to be ready.

[ ]:
download_requested(request_key = request_id)

You can then load data using open_dwca and the taxon_key parameter

[ ]:
geodf = open_dwca(taxon_key = tax_key)

You can then create an enrichment file just like with any other dataset (see first section of the tutorial).